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Deciphering neuronal variability across
states reveals dynamic sensory encoding

ShailajaAkella 1 , Peter Ledochowitsch1,4, JoshuaH. Siegle 1, HannahBelski1,
Daniel D. Denman 1,5, Michael A. Buice 1, Severine Durand 1,
Christof Koch 1, Shawn R. Olsen 1 & Xiaoxuan Jia 2,3

Influenced by non-stationary factors such as brain states and behavior, neu-
rons exhibit substantial response variability even to identical stimuli. However,
it remains unclear how their relative impact on neuronal variability evolves
over time. To address this question, we designed an encoding model condi-
tioned on latent states to partition variability in themouse visual cortex across
internal brain dynamics, behavior, and external visual stimulus. Applying a
hiddenMarkovmodel to local field potentials, we consistently identified three
distinct oscillation states, each with a unique variability profile. Regression
models within each state revealed a dynamic composition of factors influen-
cing spiking variability, with the dominant factor switching within seconds.
The state-conditioned regression model uncovered extensive diversity in
source contributions across units, varying in accordance with anatomical
hierarchy and internal state. This heterogeneity in encoding underscores the
importance of partitioning variability over time, particularly when considering
the influence of non-stationary factors on sensory processing.

The amount of information a sensory neuron carries about external
stimuli is reflected in its repeated activity pattern in response to the
same stimuli1. However, trial-to-trial variability, ubiquitous in the ner-
vous system2, constrains the amount of sensory information in single-
trial neural responses to the stimulus. It follows that the time course of
this variance mimics the highly non-stationary dynamics of the
underlying neuronal processes3,4. For example, when animals actively
explore their environment, the sensory cortex shows desynchronized
responses in a manner that increases their responsiveness to stimuli5.
Conversely, during periods of sleep or quiet wakefulness, cortical
neurons tend to synchronize their activity, resulting in decreased
sensitivity to external stimuli6. Dissecting these non-stationary
dynamics is critical to comprehending their role in information
encoding and ultimately, perception.

Even with well-controlled experiments and behavior-monitoring
techniques7,8, understanding how neuronal variability changes over
time is challenging9. This is further complicated by the high-

dimensional interactions between the various sources of neuronal
variability: external stimuli, behavior, and internal brain dynamics10. To
address this complexity, a common strategy involves the identification
ofmeaningful temporal patterns andpotential latent variables that can
capture the evolvingdynamics of neural activity. Thesepatterns,which
accurately capture the internal brain dynamics, are typically referred
to as “brain states"5,11–13.

Brain states, characterized by distinct patterns of neural activity
and functional connectivity, play a pivotal role in shaping the dynamics
of neuronal variability6,12, influencing how sensory information is
processed4,14 and behaviors are executed5,11. For instance, during
heightened attention, decreases in the correlations between the trial-
to-trial fluctuations in the responses of pairs of neurons serve to
enhance the signal-to-noise ratio of the entire population, improving
behavior15. Likewise, several studies have shown that random fluctua-
tions in the processing of sensory stimuli originate from rapid shifts in
the animal’s arousal state11,16. Tightly linking internal brain dynamics to
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behavior, brain states serve as an ideal temporal framework to study
the dynamics of neuronal variability.

Recently, researchers have leveraged advanced machine-learning
tools to explain single-trial neural activity by incorporating extensive
stimulus and behavioral features17–19. While these studies reveal the
multi-dimensional nature of neuronal variability, they often assume
that neuronal variability remains constant over time. To address this
gap, several parallel lines of research have used latent dynamical
models to study the temporal patterns of neuronal variability5,12,20,21.
However, these studies have not explicitly explored the different
sources contributing to variability, as it changes over time. Conse-
quently, our understanding of how various sources dynamically con-
tribute to the non-stationarity of neuronal variability remains
limited (Fig. 1A).

Here, we present a comprehensive investigation on how internal
and external factors collectively shape the time course of neuronal
variability to influence sensory coding. We used the Allen Brain

Observatory Visual Coding dataset, which comprises simultaneous
recordings of local field potentials (LFPs) and spiking activity from
hundreds of Neuropixels channels in multiple visual areas along the
anatomical hierarchy22. As mice passively viewed natural movies, we
applied Hidden Markov Models (HMMs)23 on LFP data extracted from
six visual cortical regions to establish a global temporal framework of
internal latent states. Quantifying various aspects of variability across
individual trials and neuronal populations, we uncovered significant
changes in neuronal variability across states. These findings indicated
dynamic shifts in the efficiency of sensory processing over time. To
disentangle the sources of non-stationary sensory processing, we
designed a neural encoding framework conditioned on internal states
to partition variability across three crucial factors: internal brain
dynamics, spontaneous behavior, and external visual stimuli. Through
this model, we quantified the time-varying contributions of these
sources to single-trial neuronal and population dynamics. Our findings
revealed that, even during persistent sensory drive, neurons
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Fig. 1 | Schematic overview on deciphering variability across time and hier-
archy. A Neuronal variability is a combined effect of influences from independent
stochastic processes including external sensory factors, behavior, and fluctuations
in internal brain states. The resulting neuronal responses exhibit a variable tem-
poral structure across trials and individual neurons. Capturing these temporal
dynamics is a challenging problem and lies at the core of understanding the
functional role of neuronal variability. B Top: Schematic of the experimental setup.

Bottom: Neuropixels probes in six visual cortical areas simultaneously record local
field potentials and spiking activity. A retinotopic sign map overlaid on the vas-
culature image guides area-specific targeting. C Anatomical hierarchy scores of the
six visual areas recomputed from ref. 25. Studying variability along the visual
hierarchy can reveal important insights about information propagation and
encoding at each stage of signal processing.
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dramatically changed the degree to which they were impacted by
sensory and non-sensory factors within seconds. Additionally, we
observed considerable diversity in neural encoding across visual cor-
tical units, with the relative influence of these sources varying based on
their anatomical location and cell type. Taken together, our results
provide compelling evidence for the dynamic nature of sensory pro-
cessing, while emphasizing the role of latent internal states as a
dynamic backbone of neural coding.

Results
We analyzed the publicly available Allen Brain Observatory Neuropix-
els dataset, previously released by the Allen Institute22. This dataset
comprises simultaneous recordings of spiking activity and local field
potentials (LFPs) from six interconnected areas in the visual cortex of
mice (n = 25) passively viewing a variety of natural and artificial visual
stimuli (Fig. 1B). To estimate the dynamic nature of internal state
fluctuation during sensoryprocessing, we focused our analysis ondata
recorded during repeated presentations of a 30 s natural movie. We
used a continuous stimulus to mitigate sudden transients in activity
induced by abrupt changes in the visual stimuli. Lastly, the application
of quality control metrics yielded, on average, 304 ± 83 (mean ± std)
simultaneously recorded neurons distributed across layers and areas
per mouse (see Methods).

Previous studies22,24 demonstrated that the functional hierarchy of
visual areas aligns with their anatomical organization25. This hierarchy
places the primary visual cortex (V1) at the bottom, followed by ros-
trolateral (RL), lateromedial (LM), anterolateral (AL), posteromedial
(PM), and anteromedial (AM) areas (Fig. 1C). Here, we consider this
visual hierarchy as a first-order approximation of signal processing
stages to study signal propagation and information encoding while
crucially accounting for the non-stationarity in spiking variability that
arises due to influences from fluctuating internal and external factors.

Identification of oscillation states from local field potentials
Internal brain states can vary without clear external markers, making
their quantification challenging. To capture state changes associated
with internal processes, we employ a definition of brain states derived
using LFPs recorded invasively from six visual areas22. LFPs reflect
aggregated sub-threshold neural activity and capture the highly
dynamic flow of information across brain networks26. The spectral
decomposition of LFPs reveals different frequency bands that corre-
late with specific cognitive states27–29, sensory processing30–34, and
behavior35–37. We found that LFPs in the mouse visual areas also
revealed a distinct frequency spectrum across time, whose dynamics
were strongly coupled to arousal-related behavioral variables (Fig. 2A).
Accordingly, we envisioned that a latent state model could reflect the
underlying latent brain dynamics by capturing the dynamic patterns of
the LFP spectrum, such that each latent state reflects an oscillation
state. To extract these oscillation states fromLFPs in the visual area, we
employ Hidden Markov modeling23,38,39 on filtered envelopes of LFPs
within distinct frequency bands (Fig. 2B, left panel): 3–8Hz (theta),
10–30Hz (beta), 30–50Hz (lowgamma), and 50–80Hz (high gamma).
This approach enabled us to fully capture LFP power across the
3–80Hz frequency range (Supplementary Fig. S1A), while also aligning
with the observed frequency boundaries in the spectral decomposi-
tion of LFPs. Finally, to capture laminar dependencies, the observa-
tions supplied to the HMM also comprised LFPs from superficial,
middle and deep layers in all visual areas (one channel each from layer
2/3, layer 4, layer 5/6; Fig. 2B (middle panel), Supplementary
Fig. S1E, F).

We found that LFP dynamics in the visual cortex consistently
unfolded through three reliable oscillation states across all mice (see
Methods; Fig. 2C, 3.08 ± 0.39 states, n = 25 mice, mean ± std). These
states did not depend on stimulus types (Supplementary Fig. S4A, B),
specific visual areas (Supplementary Fig. S1B, C), or layers

(Supplementary Fig. S1E, F). The identity of the inferred states was also
remarkably consistent across mice, each characterized by a distinct
distribution of the power spectrum: a high-frequency state (SH), a low-
frequency state (SL), and an intermediate state (SI). While the high-
frequency state is characterized by increased power in the low and
high gammabands, slowoscillations dominate the low-frequency state
dynamics in the theta frequency ranges (Fig. 2D, E, Supplementary
Fig. S2A). LFP power distribution in the intermediate state is more
uniform.

These oscillation states demonstrate stable dynamics, as reflected
by the large values along the diagonal of the transitionmatrix, ranging
between 0.94 and 0.99 (Supplementary Fig. S3B). Dwell time in a state
averaged around 1.5 ± 0.14 s (mean± sem, n= 3 states) (Fig. 2F), and the
transition intervals between consecutive states (the interval around a
transition during which the HMMposterior probability is < 80 %) were
significantly shorter than the dwell times, lasting only for about
0.13 ± 0.006s (mean ± sem). Additionally, direct transitions between
the low- and high-frequency states were rare and required transition-
ing through the intermediate state, as evident in both two- and three-
step transition sequence-probability trends (Fig. 2G). Consequently,
mice spent only short durations in the intermediate state
(0.97 ± 0.001 s, mean ± sem), while they spent the most prolonged
durations in the high-frequency state (1.92 ± 0.003s, mean ± sem,
pSH , SI

= 1.17e-167, pSH , SL
= 6.6e-79, pSI , SL

= 1e-11, one-way ANOVA, n = 25
mice). Notably, this state property was dependent on stimulus type
(Supplementary Fig. S4C). During repeated presentations of the
drifting grating stimulus, transitions between the extreme states of
low- and high-frequency were much faster and more likely (Supple-
mentary Fig. S4E, F). This significantly reduced the amount of time
mice spent in the intermediate state (0.25 ± 0.0001 s, p = 1.5e-120, one-
way ANOVA, Supplementary Fig. S4C). However, in the absence of any
stimulus, mice tended to spend longer durations in the intermediate
state (1.16 ± 0.001 s, p = 3.5e-29, one-way ANOVA). We attribute these
differences to the strong neural responses evoked by sudden transi-
tions of the visual stimulus such as, the onset and offset of drifting
gratings stimuli.

Correlation between oscillation states and body movements
Brain state variations often exhibit strong correlations with the ani-
mal’s behavioral context40,41. Indeed, several studies have reported
neural activity changes in the visual cortex associated with various
behavioral features17,42,43. To this end, we examined the behavioral
correlates of the oscillation state patterns, comparing pupil size, run-
ning speed, and facial, limb, and tailmovements across different states
(Fig. 3A–C). Our investigation revealed a strong association between
behavioral movements and internal oscillation states across subjects
(Fig. 3E). Notably, a shift to the high-frequency state corresponded
closely with increased movements and pupil size (Fig. 3D), suggesting
increased arousal levels in this state. Conversely, mice tended to be at
rest in the low-frequency state while only making small movements in
the intermediate state11,44,45.

Several studies have considered locomotion as an indicator of
brain state to examine variations in visual encoding18,46. To quantify the
relationship between internal oscillation states and different beha-
vioral features, we calculated themutual information (MI) between the
states and each behavioral feature47. We found that changes in the
oscillation states were more faithfully mimicked by pupil size or facial
movements (Fig. 3D), reporting significantly higher MI than all other
behavioral responses (MIpupil = 0.12 ± 0.006, MIface= 0.1 ± 0.006,
mean± sem, n = 25 mice), including running (MIrunning = 0.08 ± 0.007,
mean± sem, n = 25 mice, Fig. 3F). This held true despite the strong
positive correlations between all behavior variables (r = 0.4 ± 0.03,
mean± sem, n = 25 mice), and especially between running, facial
movement, and pupil size (r = 0.6 ±0.04, mean ± sem, n = 25 mice).
Importantly, all behaviors associated with running (movements in the
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Fig. 2 | Properties of internal oscillation states identified from local field
potentials in awake behaving mice. A Top: Local field potential (LFP) power
modulations in V1 recorded from mice passively viewing a naturalistic movie.
Bottom: Time course of running speed and pupil area during the same time period.
B Schematic to identify oscillation states using LFPs. Discrete states are defined
basedon frequency-specific transients of LFPs fromsix visual areas. HiddenMarkov
model (HMM) uses Hilbert transforms in the theta (3–8Hz), beta (10–30Hz), lower
gamma (30–50Hz), and higher gamma (50–80Hz) frequency ranges.CTop:Model
comparison among HMMs over a range of latent states using three-fold cross-
validation. The cross-validated log-likelihood (LL) estimate, normalized by the top
eigenvalue of the state definition matrix, is reported for each mouse (hollow cir-
cles) along with across-subject averages (solid circles, n = 25 mice, error bars
represent s.e.m). For each mouse, the optimal number of states was identified as
the pointwhere the normalized LLwasmaximized. Finalmodel selectionwas based

on themajority rule across allmice. Bottom: Evaluationof state similarity (λ1) as the
top eigenvalue of the state definition matrix. D Top: State posterior probabilities
identified by the HMM. Bottom: LFPs from randomly selected channels from V1,
displayed alongside their respective latent states over the same duration. E LFP
power distribution in the three-state model. Shaded lines represent the state-
specific z-scored power distributions in individual mice, and the solid black line
represent the average across allmice (N= 25mice). In state-1, or the high-frequency
state, LFPs are dominated by high-frequency gamma oscillations. State 3, or the
low-frequency state, has characteristic slow oscillations in the theta band.
F Histogram of state dwell times in each trial across all states and all mice.
G Average probability of observing 3-step or 2-step (inset) transition sequences to
different states. Transition probabilities were calculated from observed sequences
averaged across all mice (n = 25, error bars represent s.e.m). Source data are pro-
vided as a Source Data file.
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proximal end of the tail, left limbs, and body center) reported similar
MI with the oscillation states. To further validate these results, we used
HMMs to quantify behavioral states in individual mice, fitting indivi-
dual models to pupil size, face motion, and running measures. Upon
comparing these behavioral states with oscillation states, stronger
correlations emerged with pupil size and face motion than with run-
ning speed (Supplementary Fig. S5B; p =0.0007, one-way ANOVA,
n = 25 mice). We attribute these differences to the dissociation
betweenpupil size and running speed, particularly in caseswherepupil
dilation occurs, even when the mouse remains stationary (Supple-
mentary Fig. S5A). These results suggest that facial movements serve
as a reliable representation of the underlying internal states reflected
in voluntary behavior, almost as good as the involuntary changes in
pupil size48.

Neuronal variability changes across oscillation states and visual
hierarchy
After defining the internal oscillation states and establishing their
relation to behavior and arousal state, we wondered how spiking
variability changes across these states. Across states, we observed
distinct variations in population activity and synchronization levels
(Fig. 4A–C). Consistent with previous observations of attentional
effect15, increased spiking activity (av. % increase = 7.7 ± 1.6, mean ±
sem, p = 6.3e-5, pairwise T-test, n = 25 mice) and decreased correlation
(av. % decrease = 36.6 ± 3.4, mean ± sem, p = 1.3e-10, pairwise T-test,
n = 25 mice) were typical of the high-frequency state. Moreover, the
transition-state-like properties of the intermediate state were broadly
consistent across various neuronal properties (Fig. 4B, C) and behavior
(Fig. 3E). Bolstered by these findings, we evaluated three types of
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variability in single neurons to capture complementary aspects of
neuronal variability: percentage of shared variance within a popula-
tion, spike timing variability, and variability in spike counts across
trials.

Previous studies have shown that variability shared within a neu-
ronal population can constrain information propagation between
processing stages49–52. This is because shared variance within a

population may not average out53,54, leading to a deterioration of
the population’s coding capacity. To study how shared variability
evolves across various internal states, we used factor analysis
(FA)55 to partition the spike count variability into its shared and inde-
pendent components (Fig. 4D, top). Within a neuronal population,
the shared component quantifies co-fluctuations in firing rates
among individual neurons, while the independent component
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captures their Poisson-like variability. Percentage of shared variability
was then evaluated as the ratio between eachneuron’s shared and total
variance. Consistent with previous findings that noted more synchro-
nization within a population during low-arousal states40,41, the per-
centage of shared variability was highest during the low-frequency
state (Fig. 4D, bottom). In this state, fewer factors influenced the
observed patterns of variation compared to the other states (number
of FA components, SH = 21 ± 1, SI = 19 ± 1, SL = 16 ± 1, p = 1.8e-06, one-
way ANOVA). Neurons within V1 reported a larger shared component
than neurons within other areas. The percentage of shared variance
decreased along the visual hierarchy in the high-frequency state,
(Pearson correlation r = -0.84 with anatomical hierarchy score,
p =0.03), while the trends were not significant in the intermediate and
low-frequency states (SL: Pearson’s r = -0.76, p =0.08, SI: r = -0.58,
p =0.22).Compared tohigher visual areas, neurons in early visual areas
are more strongly modulated by the temporal features of visual
stimuli22,56. Thus, we attribute the observed decreasing trends across
the visual hierarchy to the stronger modulation of neurons in lower
visual areas by the temporal features of the natural movie, such as
rapid variations in luminance or moving edges. This likely induces
more temporally coherent activity within populations in the lower
visual areas compared to higher visual areas, resulting in greater
shared variance.

To study variability in spike timing, we measured the histograms
of inter-spike intervals (ISI) and their associated coefficients of
variation57. Coefficient of variation (CV) of each neuron was evaluated
as the ratio between the standard deviation and mean of the ISI dis-
tributions. Therefore, the farther a neuron’s CV deviates from 0, the
more irregular the neuron’s firing (Fig. 4E, top left). Evaluating CV in a
state-specific manner, we found that neurons during the high-
frequency state had broader ISI distributions than during other
states (Fig. 4E, top right), and accordingly, firedmore irregularly in this
state (Fig. 4E, bottom). Along the visual hierarchy, spike timing varia-
bility decreased irrespective of the internal state (Fig. 4E, bottom, SH:
Pearson’s r with anatomical hierarchy score = -0.94, p = 0.006; SI:
Pearson’s r = -0.97, p =0.001, SL: Pearson’s r = -0.94, p =0.006). Con-
sistent with our expectation that V1 neurons more faithfully represent
the features of the time-varying visual stimuli22,56,58,59, we found that
activity of V1 neurons was the most irregular.

In visual system studies, trial-to-trial variability is commonly
assessed using the Fano factor (FF)60, which quantifies the ratio of

variance to mean spike count across trials. An FF of 1 corresponds
to a Poisson process, indicating that individual action potentials
are generated randomly according to a constant firing rate. To ensure
the relevance of our analysis to the visual stimulus, we evaluated
FF of neurons with receptive field locations near the screen’s center57,61

(see Methods, Fig. 4F, top). Overall, single neurons in the visual cortex
showed greater-than-Poisson variability with FF averaging around
1.21 ± 047 (mean± std). Specifically, spike counts in the low-frequency
state showed the largest trial-to-trial variability, suggesting it is less
modulated by visual stimuli. In contrast, trial-wise variability was low-
est in the high-frequency states (Fig. 4F, bottom). Interestingly, neu-
rons in RL reported the highest variability across visual areas (Fig. 4F,
bottom), even regardless of the animal’s internal state and stimulus
presented (Supplementary Fig. S6C, D). Accordingly, excluding area
RL from the analysis revealed a decreasing trend in the trial-to-trial
variability along the hierarchy in the high-frequency state (SH: Pear-
son’s r with anatomical hierarchy score = -0.94, p =0.02; SI: Pearson’s
r = -0.43, p =0.5, SL: Pearson’s r = -0.46, p =0.4).

Based on these results, we hypothesized that lower shared var-
iance and trial-to-trial variability in spiking activity during the high-
frequency state would improve stimulus encoding (Fig. 4D, F). Mean-
while, the increased spike timing variability during this state could be
due to better encoding of the temporal changes in the natural movie
video stimulus (Fig. 4E). We directly validated this hypothesis by
evaluating the mutual information (MI) between the population spik-
ing activity and the pixel-level information within each frame of the
movie in a trial-by-trialmanner in each state (Fig. 4G, top). As expected,
spiking activity in the high-frequency state was more informative
about the stimulus than the lower-frequency state, with V1 neurons
encoding most of that information (Fig. 4G, bottom, Supplementary
Fig. S6A). In line with the observed high FFmeasures (Fig. 4F), neurons
in RL reported the lowestMI with the stimulus (see Discussion). Again,
omitting the lowMI measures in RL, pixel-level information decreased
along the hierarchy during the high-frequency state (SH: Pearson’s r
with anatomical hierarchy score = -0.90, p =0.038; SI: Pearson’s r = -
0.86, p =0.06, SL: Pearson’s r = -0.81, p =0.09). While these findings
confirmed the association between spiking variability and stimulus
representation across states, they further suggest a loss of pixel-level
information along the visual pathway.

In summary, the high-frequency state is characterized by lower
population shared variance, trial-to-trial variability, and increased

Fig. 4 | Neuronal variability and information encoding across states and the
visual hierarchy.ARaster plots (~10 s) showing the response of 25 units, each from
V1 and AM, during two trials in which the mouse was in different states. Each row
represents the activity of the same single neuron across the two trials. SH: High-
frequency state (green), SI: Intermediate state (blue), and SL: Low-frequency state
(pink). B State and area-specific population activity, z-scored and averaged across
all mice (pSH , SI

= 1.4e-05, pSH , SL
= 3.0e-07, pSI , SL

=0.90, one-way ANOVA, n = 25
mice). Error bars represent s.e.m.CAverage pairwise correlation between averaged
neuronal population activity in different visual areas as a function of oscillation
states (pSH , SI

= 1.5,pSH , SL
=0.002, pSI , SL

=0.002, one-wayANOVA,n = 25). Error bars
represent s.e.m. D Population shared variance. Top: Separation of shared and
independent variance using factor analysis (FA). FA partitions the spike count
covariance matrix into shared and independent components. Bottom: Percentage
of shared variance plotted against the anatomical hierarchy scores of the visual
areas in each oscillation state, averaged across all units (One-way ANOVA:
pSH , SI

= 9.6e-7, pSH , SL
= 1.3e-146, pSI , SL

= 1.2e-95; Two-way ANOVA, states:
F 431.2,p = 1.5e − 189, areas: F = 78.8,p = 3.3e− 82, states × area: F = 3.3,p = 2.6e− 4,
n = 7609 units). E Neuronal variability across time, quantified using the coefficient
of variation (CV). Top-left: Simulated distributions of inter-spike-intervals (ISI) for
regular and Poisson-likefiring. For a very regular spike train, a narrowpeak in the ISI
histogramcorresponds toCV ≈0,whereas Poisson-like variability in the spike trains
leads to an exponentially distributed ISI histogram with CV = 1. Top-right: Dis-
tribution of ISIs in each oscillation state over a 2.5 sec range. Bottom: CV along the
visual hierarchy (quantified as anatomical hierarchy scores) and across oscillation

states, averaged across all units (One-way ANOVA: pSH , SI
= 4.9e-23, pSH , SL

= 3.9-03,
pSI , SL

= 2.8e-11; Two-way ANOVA, states: F = 42.5, p = 3.6e − 19, areas: F = 88.1, p =
4.5e − 92, states × area: F = 4.8, p = 4.9e − 7, n = 7609 units). F Neuronal variability
across trials, quantified using Fano factor (FF). Top-left: Evaluation of FF as an
average of the FF ratio over non-overlapping windows of 150 ms with at least ten
trials in each state. Top-right: Mean spike count versus variance over all times in
each state for an example cell in V1. Bottom: FF along the visual hierarchy and
across brain states, averaged across all units (One-way ANOVA: pSH , SI

= 2.8e-4,
pSH , SL

= 2.4e-33, pSI , SL
= 3.5e-39; Two-way ANOVA, states: F = 107.7, p = 7.5e − 47,

areas: F = 7.1, p = 9.9e − 6, states × area: F =0.6, p =0.8, n = 5017 units). Pearson
correlation with hierarchy scores excluding RL, SH: rp−RL= − 0.94, pp−RL=0.02; SI:
rp−RL= −0.43, pp−RL=0.5; SL: rp−RL= − 0.46, pp−RL=0.43. G Information encoding
along the visual hierarchy across all oscillation states, quantified using mutual
information (MI). Top: For each trial, MI was evaluated between the population
spike count matrix and a matrix of flattened movie frames at time points corre-
sponding to each state using a matrix-based entropy estimator. Bottom: MI across
the visual hierarchy and oscillation states averaged across all mice (Pairwise T-test:
pSH , SI

=0.01, pSH , SL
= 7.3e-10, pSI , SL

= 9.3e-04; Two-way ANOVA, states:
F = 3.1, p =0.04, areas: F = 2.7, p =0.03, states × area: F =0.02, p =0.99, n = 25).
Pearson correlation with hierarchy scores excluding RL, SH: rp−RL = − 0.9, pp
−RL =0.03; SI: rp−RL = − 0.86, pp−RL =0.06; SL: rp−RL= − 0.81, pp−RL =0.09. Error bars in
D–G represent 95% confidence intervals. All statistical tests were adjusted for
multiple comparisons using the Bonferroni correction (***: p <0.0001, **: p <0.001,
*: p <0.05). Source data are provided as a Source Data file.
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spike timing variability. During this state, variability trends showed
strong anti-correlationswith the anatomical hierarchy scores such that
V1 demonstrated the highest variability across the different visual
areas in all three measurements. This could be due to a strong influ-
ence of the temporal pattern of sensory drive in early areas, which is
validatedby the trendofdecreasingpixel-level information encoded in
V1, especially in the high-frequency state.

Internal state conditioned neural encoding model
Given the substantial influence of the internal oscillation states on
spiking variability and sensory processing, we next sought to quantify
the impact of different variability sources on neural dynamics during
the different states. We built an encoding model conditioned on
internal states to predict changes in single-trial neural activity in each
visual area (Fig. 5A). The resulting framework allows for the
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quantification of state-specific contributions of stimulus and other
source variables to the target single-trial neural activity. Deriving
inspiration from an HMM-GLM framework62, the encoding model has
two essential pieces: an HMM governing the distribution over latent
LFP states (identified in the preceding section) and a set of state-
specific predictors governing the weight distributions over the input
features. However, unlike the previously proposed HMM-GLM, the
state sequences are pre-determined by the HMM, and we do not re-
train the HMMmodel for optimized prediction. Finally, themodel also
produces a time-varying kernel (τ seconds long) for each feature,
relating that variable to neural activity in the subsequent time bin
(Fig. 5A, panel 3).

Our model considers an extensive array of variables that we
classify into three categories: stimulus, behavior, and internal brain
activity (Fig. 5A, panel 1). Stimulus features include a set of higher
(edges, kurtosis, energy, entropy) and lower-order (intensity, contrast)
image features, and behavioral features include the complete set of
movement variables determined in the previous section (see Fig. 3).
Under internal brain activity, the model includes both the averaged
neuronal population activity from simultaneously recorded neigh-
boring visual areas (that is, other than the target visual area) and the
raw LFPs from different layers within the target area. The averaged
neuronal population activity represents the average activity across all
units in a given area. Since model fits to linearly dependent input
features are unreliable, we employed QR decomposition to system-
atically orthogonalize the input features63 (see Methods).

We derived two separate versions of the encodingmodel to study
neural variability at multiple scales: a population model and a single-
neuronmodel (Fig. 5B). The single-neuronmodel predicted the single-
trial firing rate of the target neuron, while the population model pre-
dicted the single-trial averaged neuronal population activity in an area.
In the population model, the predictors were linear regressors of the
input features, and themodel wasfit using Ridge regression to prevent
overfitting (equation (16)). The single-neuronmodel accounted for the
non-linearity associated with spike generation, wherein the predictors
were designed as Poisson regressors of the input features, and the
model was optimized by maximizing a regularized log-likelihood
function to prevent overfitting (equation (17)). To evaluate how well
the model captured the target neural activity, we computed the five-
fold cross-validated R2 (cvR2, equation (18)).

Before quantifying state-specific variability from different sour-
ces, we assessed the effect of internal states on neuronal variability
while controlling for other factors. We ran two separate ANCOVA tests
to examine how internal states influenced variability in both single-unit
and population-level activity (Supplementary Fig. S7A–D). Internal
states significantly affected variability at both levels, with contribu-
tions of 3% for single-unit activity and 6% for averaged population
activity, indicating that additional factors are required to explain a
majority of the observed variability.

State specific contributions to single-neuron variability
To systematically quantify the relative contributions from thedifferent
sources to single-neuron variability in each trial, we constructed a
state-conditioned GLM framework. Since a GLM predicts the condi-
tional intensity of the spiking response, we evaluated our model per-
formance against the rate functions of individual neurons obtained
after smoothing the spike counts with a Gaussian filter (s.d. 50ms). To
appropriately identify their variability sources, neurons were further
selected based on minimal firing rate (>1 spikes/s in all states) criteria
and receptive field locations, along with the standard quality control
metrics of the dataset22 (see Methods). After filtering, n = 3923 units
remained across all mice and were analyzed using the GLM model.

The model explained an average of cvR2
F =26:7 ± 13:5% (mean ±

std, n = 3923 units) of the total variance of single-trial activity across all
neurons (Fig. 5C). To quantify the relative contributions of different
source variables, we applied the model to individual sub-groups cor-
responding to each category. Across all factors, stimulus features were
the most predictive of single-neuron activity (cvR2

S = 19:8± 13:6%,
mean ± std), while internal brain activity was the least predictive
(cvR2

I = 11:6±9:5%, mean ± std). Within the internal brain activity
category, averaged population activity from neighboring visual areas
accounted for nearly twice as much explained variance as LFPs from
the same area (cvR2

LFP = 5:6±6:4%, cvR2
P = 11:1 ± 9:4%, mean ± std,

p = 3.2e−179, one-way ANOVA). Therefore, these features were analyzed
separately. Across different visual areas, single neuron variability was
best explained along the anterolateral pathway (LM, AM, and AL,
cvR2

F = 26:2 ±0:9% (mean ± std), Supplementary Fig. S8, p = 2.5e-05,
one-wayANOVA). Visualizing themodel predictions using Rastermap18

revealed transient changes in the neural ensemble that were captured
solely by the stimulus features (Fig. 5D). Other features were less dis-
cerning and captured only the broad changes in the firing patterns.
Additionally, we examined cell-type specific contributions from var-
ious factors.We found that the explained variance of fast spiking units
(FS) significantly surpassed that of regular spiking units (RS) (Supple-
mentary Fig. S8H, p = 5.32e-11, one-way ANOVA), with behavior and
internal activity contributing more to FS units. In contrast, stimulus
features explained variance equally well in both FS and RS cells (Sup-
plementary Fig. S8F–K, behavior: p = 9e-48, internal activity: p =0,
stimulus: p =0.05, one-way ANOVA).

We further investigated how internal brain states influence neu-
ronal encoding by analyzing state-wise contributions of input features
to single-neuron activity. Neuronal activity was the most predictive
during the high-frequency state (Fig. 5E, p = 5e-109, one-way ANOVA)
such that stimulus and behavior-driven variability was highest in this
state (stimulus: p = 2.1e-70 ; behavior,p =0.008, one-way ANOVA), and
lowest in the low-frequency state. Within internal activity features,
population activity from neighboring visual areas contributed more
significantly during the high-frequency state (p = 0.02, one-way
ANOVA), while LFPs from the same area played a more prominent

Fig. 5 | Relative contributions of the different sources to single neuron
variability. A State-conditioned encoding model to account for state-specific
contributions of different sources of variability. Design matrices were constructed
using decorrelated features to train state-specific regressors. SH: High-frequency
state (green), SI: Intermediate state (blue), and SL: Low-frequency state (pink).
B Regression models to study encoding in population and single neuron models.
Populationmodels included a linear weighting of the input features, while in single
neuron models, linear weighting was followed by a non-linear exponential projec-
tion. C–G Results from single-neuron model. C Mean explained variance for dif-
ferent categories of input features, averaged across n = 3923 neurons and obtained
using five-fold cross-validation. D (First panel) Neuronal activity, with neurons
sorted vertically by a manifold embedding algorithm, Rastermap. (Panels 2–6)
Prediction of neuronal activity (n = 350 units, best explained units across mice and
areas) from respective input feature categories. E Contributions from single

category models to explaining single-neuron variability during different oscillation
states (n = 3923 neurons). SH: High-frequency state (green), SI: Intermediate state
(blue), and SL: Low-frequency state (pink). F Explained variance of all units in each
input feature category. G Neuronal clusters identified through unsupervised clus-
tering of the final explained variance from single-category models for all units.
H Distribution of neuronal clusters across areas. I Neuronal clusters derived from
unsupervised clustering of state-specific explained variance from single-category
models for all units, showing how feature encoding dynamics shift across different
oscillatory states. Box-plots in (C, E) show the first and third quartiles, the inner line
is the median over all neurons (n = 3923), and the whiskers represent 1.5 × IQR
(Tukey method). Statistical tests in (C, E) were adjusted for multiple comparisons
using the Bonferroni correction (***p <0.0001, **p <0.001, *p <0.05). Source data
are provided as a Source Data file.
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role in the low-frequency state (p = 3.9e-28, one-way ANOVA). These
findings are consistent with prior studies11,64,65, highlighting the role of
slow-oscillatorywaves in synchronizing spiking activity during the low-
frequency state (Fig. 4C, D), thereby disrupting stimulus encoding in
this state.

The influence of different sources was not uniform across neu-
rons; rather, individual neurons appeared to be driven by a diverse
array of factors (Fig. 5F), suggesting heterogeneous coding mechan-
isms within the population. To investigate single-cell diversity in the
visual cortex, we used unsupervised clustering based on each neuron’s
encoding pattern, represented as a 5-element vector that included
(cross-validated) explained variance from each feature category (sti-
mulus, behavior, same-area LFPs, and population activity from other
visual areas) and the number of categories with >10% explanatory
power (Supplementary Fig. S9A). Clustering based on these encoding
profiles revealed six distinct groups (Fig. 5G, Supplementary Fig. S9B):
one dominated by stimulus, one by behavior, another with high
encoding of both stimulus and behavior, a group influenced by both
stimulus and averaged population activity from neighboring visual
areas, a group with high explained variance across all input feature
categories (multi-source), and a final group comprising neurons where
no single feature explained >10% of their variance. The two largest
clusters comprised units predominantly driven by stimulus features
alone (29.5%) andmulti-source units (30.2%). These two clusters made
up 60%of all units (Fig. 5G). In contrast, units driven solely by behavior
formed the smallest cluster, representing just 4.7% of all units, while
12.2% of units were jointly influenced by both stimulus and behavior
features.

When examining the distribution of all neuron clusters across
visual areas, we found that the fraction of units best predicted by
stimulus features peaked in V1 (39.6% of units in V1), decreasing along
the hierarchy (Fig. 5H; LM: 33.8%, RL: 21%, AL: 24.8%, PM: 26%, AM:
21.3%; Pearson correlation with hierarchy score, rp−RL = − 0.96, pp
−RL =0.01). Conversely, the influence of behavior increased along the
hierarchy. Proportion of units driven by behavior alone (V1: 2.1%, LM:
5.3%, RL: 5.6%, AL: 5.8%, PM: 5.4%, AM: 5.9%; rp =0.84, pp =0.03) and of
units affected by both stimulus and behavior nearly doubled in higher-
order areas (V1: 7.7%, LM: 6.5%, RL: 17.9%, AL: 12.7%, PM: 16.7%, AM:
18.6%). Lastly, the proportion of multi-source units also increased
along the hierarchy (V1: 28%, LM: 28.8%, RL: 30%, AL: 32.6%, PM: 31.4%,
AM: 32.4%; rp = 0.85, pp = 0.03). These findings point to an increasing
functional diversity among neurons as one ascends the visual hier-
archy. Supporting this, neurons influenced by multiple factors, espe-
cially behavior, had larger receptive field sizes (Supplementary
Fig. S9F, p =0.0001, one-way ANOVA), consistent with the known
trend of increasing receptive field sizes along the hierarchy66,67. Multi-
source units also tended to have higher firing rates compared to
neurons predominantly explained by a single factor (Supplementary
Fig. S9D, p = 4.3 × 10−71, one-way ANOVA). Finally, the ratio of RS to FS
units was highest in the stimulus-driven cluster (8:1), exceeding the
overall ratio of 4:1 in the neuronal population (Supplementary
Fig. S9E). In contrast, clusters driven by behavior or influenced by
multiple factors had a lower ratio (2:1), indicating that non-visual fac-
tors predominantly modulate FS units, while visual factors primarily
modulate RS units.

Given the shift in neural dynamics across different brain states,
we explored how the contributing factors to single-unit activity
varied between these states. To do so, we performed a similar clus-
tering analysis based on the state-specific explained variance of
individual factors in both high- and low-frequency states (Fig. 5I,
Supplementary Fig. S9H–K). This analysis revealed notable changes
in the dominant factors contributing to single unit variance across
states. In the low-frequency state, a large proportion of units (53%)
fell into a cluster where no single feature explained >10% of
their variance. However, in the high-frequency state, around 40%

of these same units shifted to being predominantly driven by
stimulus features alone. Additionally, units influenced by multiple
sources in the low-frequency state became more specialized in
the high-frequency state. These results indicate a significant state-
dependent reorganization of neural representation in the visual
cortex.

State specific contributions to population-level variability
Recent studies17,18 have reported significant contribution of sponta-
neous movements in the emergent properties of brain-wide activity.
To examine these effects in population dynamics within the visual
cortex in a state-specific manner, we constructed a state-dependent
linear regression model to predict the averaged neuronal population
activity in each of the six visual areas. Using the same input features as
the single-neuron model, this population model explained 53.4 ± 6.6%
(mean± std, n = 25 mice, Fig. 6A) of the variance in the averaged neu-
ronal population activity across across the visual areas.

To further explore the contributions of different source variables,
we applied the model to individual sub-groups corresponding to each
input feature category. Interestingly, internal brain activity had the
most predictive power (cvR2

I = 41.0 ± 7.6%, mean± std, p = 2.5e-11, one-
way ANOVA, n = 25 mice), higher even than the combined power of
behavioral and stimulus features (cvR2

B+ S = 30.1 ± 9.3%, mean± std,
p =0.0005, one-way ANOVA, n = 25 mice). This was unlike single neu-
ron activity, which was primarily driven by stimulus features. Stimulus
features predicted the variance in the averaged neuronal population
activity better than behavioral features (cvR2

S = 22.8 ± 8.8%, cvR2
B =

18.9 ± 7.0%, mean± std, p = 0.009, one-way ANOVA, n = 25 mice).
Although bodily movements significantly contributed to both single-
neuron and population-level activity, they were rarely the dominant
factor driving visual cortical responses to natural movie stimuli. These
successive improvements in the explanatory power resulting from the
inclusion ofmore sources are evident in the prediction traces shown in
Fig. 6B. It is worth noting that if single-neuron responses to external
stimuli were completely independent, the contribution from stimulus
features to population activity would be negligible. Nevertheless, the
significant influence of stimulus features on population-level varia-
bility is suggestive of stimulus-related neuronal correlations within
an area.

The addition of internal brain activity to the combined model of
behavioral and stimulus features increased the explained variance by
almost 24% (Δr2F�ðB+ SÞ = 23.5 ± 10.2%, mean ± std, Fig. 6A). Considering
that LFP and population activity inherently carry information about
stimulus and behavioral features, potentially making part of their
contributions redundant, we have deliberately orthogonalized these
internal variables against the stimulus and behavior variables68. This
orthogonalization ensures that internal variables capture variance
beyond what can be accounted for by stimulus and behavior
variables alone.

To understand the substantial increase in explained variance, we
analyzed the contributions of internal brain activity to each state. We
found that these variables largely increased the predictability during
the low-frequency state (Δr2SL , F�ðB+ SÞ = 39.0 ± 15.8%, mean± std,
Fig. 6C, left panel). Activity in this state was poorly explained by the
combined model of stimulus and behavioral features (cvR2

SL , ðB + SÞ =
16.2 ± 11.5%, mean± std, p = 8.3e-6, one-way ANOVA, n = 25 mice). The
combined model of stimulus and behavioral features was best at
explaining variability in the high-frequency state, and accordingly,
activity in this state showed a smaller improvement in its predictability
on the inclusion of internal activity features (Δr2SH , F�ðB+ SÞ = 14.3 ± 4.6%,
mean± std, p = 2.3e-6, one-way ANOVA, n = 25 mice). Consistently,
within-area LFPs and averaged population activity from the neigh-
boring visual areas contributedmore towards explaining the activity in
the low-frequency state (p = 4.5e-6, p = 8.2e-13, respectively; one-way
ANOVA, n = 25 mice, Fig. 6D). At the same time, both stimulus and
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behavioral features demonstrated increased predictive power during
the high-frequency state (p =0.003, p =0.01, respectively; one-way
ANOVA, n = 25 mice).

Using the complete set of input features, we could predict about
61.1 ± 6.9% (mean ± std, n = 25 mice) of the variance in V1’s averaged
neuronal population activity, the highest among all visual areas
(Fig. 6F). Although including internal brain activity did not differen-
tially affect predictability across visual areas (p = 0.12, one-wayANOVA,
n = 25 mice, Fig. 6C, right panel), contributions from its sub-
components revealed interesting differences. Firstly, averaged popu-
lation activity from neighboring areas explained more variance than
within-area LFPs (p = 1.5e-9, one-way ANOVA, n = 25 mice, Fig. 6D).
Secondly, their across-area prediction showed reversed trends. While
LFPs explained significantlymore variance in V1 thanother visual areas
(p = 1.9e-8, one-way ANOVA, Fig. 6E, left panel), averaged population
activity explained significantly more variance in AM (p = 6e-3, one-way
ANOVA, Fig. 6G). Lastly, the predictive power of LFPs varied across the
cortical depth, wherein layer 4 (L4) LFPs contributed more to the
variance in the averaged neuronal population activity than LFPs in
other layers (pL2=3, L4

= 5e-4, pL5=6, L4
= 2.5e-4, one-way ANOVA, Fig. 6E,

right panel).

When disregarding the influence of internal states, stimulus fea-
tures did not significantly differ in their predictive power across areas
(Fig. 6H, p =0.13, one-way ANOVA), even at the level of single features
(Supplementary Fig. S10A, B, p∈ [0.33, 1]). However, state-specific
analysis revealed pronounced differences in the high-frequency state
(Supplementary Fig. S10D, F). In this state, different stimulus features
also showed distinct predictive powers indicating heightened sensi-
tivity to stimulus changes (Supplementary Fig. S10C, E). Specifically,
higher-order stimulus features (edges, kurtosis, and energy) reported
greater predictive power than stimulus contrast and intensity. Finally,
facial movements made the most substantial contribution to the
averaged neuronal population activity compared to other behavioral
features (Supplementary Fig. S11A, C, p =0.02, one-way ANOVA,
n = 25 mice).

Discussion
Our observations provide a comprehensive description of the dynamic
aspects of spiking variability in the visual cortex as the brain traverses
through distinct oscillation states. We characterized this variability
along three dimensions: variability across trials61, variability in spike
times57, and shared variance within a population55. By utilizing cortical
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LFPs to define different internal oscillation states, we found that each
state captured a distinct profile of spiking variability. Using the state
fluctuations as a temporal backbone, we constructed a state-based
encoding model to partition and evaluate the relative contributions
from three different sources of variability to visual cortical activity:
visual stimulus, behavior, and internal brain dynamics. The model
accounted for 27% of single-neuron variability and 53% of the variance
in averaged population activity. Neurons in the visual cortex are
influenced by a diverse array of factors, with the relative contributions
of these factors differing across sub-populations. Firstly, the combi-
nation of factors affecting variability changes spontaneously and
rapidly over time in a state-dependent manner. Secondly, the con-
tributions of each source are further influenced by cell type and ana-
tomical location, becoming increasingly heterogeneous as one
ascends the hierarchy. Lastly, while single neurons in the visual cortex
are primarily affected by stimulus features, population activity is lar-
gely dominated by internal brain activity. Overall, our study under-
scores the importance of accounting for the constantly changing
contributions from internal and external factors on stimulus repre-
sentation at the level of individual units, enabling a deeper under-
standing of how neural responses are dynamically shaped in real time.

Identifying and locating the different sources influencing neural
variability poses a significant challenge in systems neuroscience10,69.
Previous research has emphasized the significance of internal brain
activity in accounting for neuronal variability2,70,71. While these studies
did not consider variability induced by externally observable task- and
behavior-related variables, recent investigations have predominantly
focusedon this latter category of input features12,17,18,72. In this study,we
adopt a comprehensive approach by integrating contributions from
both internal brain activity and externally observable variables to
understand neuronal variability.

We considered a two-fold contribution from internal brain activ-
ity. Firstly, utilizing brain states defined by internal oscillatory rhythms
as a temporal framework, we were able to associate the various
dynamics of spiking variability with these internal states. Secondly, we
incorporated averaged neuronal population activity from each
neighboring area and LFPs as input features into the state-based
encodingmodel. These variables played a significant role in explaining
neural variability, primarily contributing to activity in the low-
frequency state. Consistent with previous findings70,71, internal vari-
ables explained ~40% of the total variability of averaged neuronal
population activity within an area, even surpassing the variance
explained by the combined model of stimulus and behavioral features
by 11% (cvR2

I - cvR2
B+ S). At the level of single neurons, contributions

from internal brain activity, although relatively small, remained sta-
tistically significant, explaining around 11% of the total variance.
However, this was nearly 9% (cvR2

S - cvR2
I ) less than the variance

explained by stimulus features alone.
Recent progress in behavioral video analysis, computational

modeling, and large-scale recording techniques has highlighted the
impact of movement-related variables on neural activity across the
cortex17,18,72. Our observations are consistent with these findings.
Behavior-related variables explained up to ~20% of the averaged
neuronal population activity and ~12% of single-neuron variability
in the visual cortex. Moreover, the influence of behavior becomes
more pronounced in the high-frequency state (Figs. 5E, 6D) and as
one ascends the visual hierarchy, entraining a larger proportion of the
neural population (Fig. 5H). However, our findings diverge from those
reported in Musall et al.17, which found that uninstructed movements
exerted a greater influence on V1 neural activity than a visual stimulus.
We attribute this difference to three reasons: first, our mice are pas-
sively viewing the screen without engaging in a behavioral task; sec-
ond, our naturalistic movie stimulus may engage a broader array of
neurons compared to the static, flashed stimuli used in previous
research; third, our recording captures single-unit spiking activity,

contrasting with previous wide-field calcium imaging. In addition to
behavior, these differences underscore the importance of recording
methodologies, experimental conditions and stimuli, prompting a
closer examination of the specific factors influencing single-trial neural
activity in diverse contexts.

Despite large variability in spiking activity, neuronal populations
exhibit a remarkable ability to robustly encode information across
different brain regions24,25,73. Our results suggest this is state-
dependent. A clear pattern emerges throughout our analyses: popu-
lation dynamics during the high-frequency state are themost effective
in representing stimulus information, while stimulus features weakly
modulate activity in other states (Figs. 4G, 5E, 6D). While several lines
of studies have indirectly confirmed this state-dependence of infor-
mation encoding either through reports of task performance or via
investigations under artificially induced states of anesthesia5,40,70,74, our
findings directly quantify and describe this dependency. Specifically,
we find that spiking activity in the high-frequency state has the lowest
shared variance, lowest trial-to-trial variability, and the highest spike
timing variability (Fig. 4). These characteristics of single-neuron
activity may result from enhanced encoding of various temporal and
spatial features of the time-varying natural movie stimulus during the
high-arousal state (Figs. 5E, 6D). In contrast, the dominance of slow
oscillatory activity in low-frequency state, coupled with high shared
variance, trial-to-trial variability, and more regular firing, appears to
reflect internal dynamics that disrupt the accurate representation of
stimulus information. We posit that this observed correlation between
heightened sensory encoding capacity and increased arousal during
the high-frequency state may arise from the mice’s innate survival
mechanism, leading them to enhance visual information intake while
in a state of heightened alertness or running.

Neurons in the visual cortex can be classified by several criteria,
including their morphology, connectivity, developmental history,
gene expression, intrinsic physiology, and in vivo encoding strategies.
Single-cell RNA sequencing studies have revealed extensive cell-type
diversity and their relationships within cortical circuits75,76. Different
cell types have distinct functional roles, which are further influenced
by their position within the cortical hierarchy and the specific inputs
they receive across different layers77–82. Furthermore, different neu-
ronal types are modulated by various factors such as behavior17,18, top-
down feedback78, and internal brain states83. Through unsupervised
clustering of each neuron’s encoding patterns, we quantified their
encoding diversity, uncovering units with specialized properties
within the visual cortex (Fig. 5G). Our findings indicate that neurons in
the visual cortex are modulated by a diverse array of factors, with the
relative contributions of these factors varying across states, hier-
archical positions, layers and cell-types (Fig. 5H, I, Supplementary
Fig. S9C, E). Additionally, we observed an increasing representation of
pan-modulated units along the visual hierarchy (Fig. 5H), suggesting
that while integrative processes may start as early as V1, a larger net-
work of neurons becomes involved in this process higher up the
hierarchy. In line with recent studies suggesting that sensory-motor
integration begins in early sensory areas18,46,84, we identified two dis-
tinct neuronal clusters likely involved in this process : one driven solely
by behavior, and another influenced by both visual stimuli and beha-
vioral factors (Fig. 5G). These findings emphasize the complex and
dynamic nature of visual processing, shaped by amultitude of internal
and external factors.

Given the hierarchical organization of the visual cortex22,25, the
response variance of a sensory neuron canpotentially limit the amount
of stimulus information available to downstream circuits51 (Fig. 4G).
While past studies have shown the effects of pair-wise correlations on
information encoded by a neuronal population49,50,53, a more com-
prehensive population-level perspective is essential to understanding
the brain’s correlational structure12,85,86. Here, we applied shared
variance55 as a generalization of the pair-wise correlations between
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single neurons extended to anentirepopulation. Notably, weobserved
a decrease in the percent of shared variance along the visual hierarchy
(Fig. 4D). While this decline might imply the introduction of inde-
pendent noise at subsequent stages of signal processing, it could
alternatively result from the increased diversity of neurons influenced
by factors other than the stimulus itself (Fig. 5H). The high variance
shared across neurons in V1 can likely be attributed to V1 comprising
the largest proportion of neurons exhibiting strong, time-locked
responses to the temporal dynamics of stimulus features (Fig. 5H4,56).
Our findings provide further support for this notion, particularly
through the observation that neurons in V1 reported high spike-timing
variability, likely corresponding to the variance induced by a con-
stantly changing stimulus (Fig. 4E). Consistently, LFPs have a more
pronounced influence on averaged population activity in V1 in com-
parison to other visual areas (Fig. 6E). This suggests that the collective
synaptic inputs into V1, represented by LFPs in the area, may entrain a
larger population in V1 than in other areas.

Previous studies have indicated that trial-to-trial variability (Fano
factor) increases as information propagates up along the visual path-
way from the retinal receptors to the primary visual cortex61,70,87. Our
observations mirror this trend in the visual cortex when mice were
exposed to full-field light flashes, revealing an increase in trial-to-trial
variability along the cortical hierarchy (Supplementary Fig. S6D).
However, in response to natural movies, trial-to-trial variability
decreased along the visual cortical hierarchy (Fig. 4F).We attribute this
decrease in variability to the heterogeneous properties of a natural
movie frame where, in awake mice, eye movements (even small sac-
cades) across the frame could elicit more variable neuronal responses
across trials in early visual areas with smaller receptive fields88. Con-
sistent with this, controlling for fluctuations in eye gaze in the eva-
luation of Fano factor abolished the area-wise differences in trial-to-
trial variability across all states (see Methods, Supplementary
Fig. S6E–G). Lastly, it is important to note the variability properties of
neurons in the rostrolateral visual area (RL),whichdonot always follow
the visual hierarchy trends. This is especially true when considering
trends related to stimulus encoding, such as trial-to-trial variability and
mutual information (Figs. 4F, G, 5H, Supplementary Fig. S6C, D). We
attribute this to two reasons. Firstly, since RL is located at the border of
the visual and primary somatosensory (S1) cortices, the functional
specialization of neurons in RL is likely more diverse than in other
visual areas. This is reflected in our findings where RL had the smallest
proportion of neurons influenced by stimulus features and the largest
proportion of neuronswith low explained variance (Fig. 5H). Secondly,
due to the retinotopic center of RL being situated on the boundary
between RL and S189, it is often challenging to target its precise reti-
notopic center90.

The dynamic nature of neuronal variance across time has been
consistently demonstrated in theoretical and empirical analyses3,10,91.
Here, we specifically quantify the magnitude of stimulus-driven neu-
ronal variability associatedwith internal states. Our findings show that,
during passive viewing, mice typically persist in a specific state for an
average duration of 1.5 ± 0.1 seconds, indicating that state-dependent
neuronal variability undergoes changes within seconds (Figs. 2F). The
state sequences reveal a smooth transition of neuronal variability
between distinct variability profiles, passing through an intermediate
state (Figs. 2G, 4). Moreover, each state constitutes a unique compo-
sition of sources that influence neuronal variability (Figs. 5E, I, 6D).
These rapid shifts in source composition across states arise from the
complex interactions between non-stationary source variables, col-
lectively contributing to the dynamics in neuronal variability.

These findings offer additional insights into the dynamic prop-
erties of neuronal variability, providing important constraints for
theoretical modeling of stimulus-driven variability. Firstly, the dyna-
mically changing source composition indicates that the responsive-
ness of a neuronal population to sensory input varies over time,

challenging the assumption of a constant stimulus contributing to the
responsiveness of a sensory system. Secondly, accounting for the
distinct variability profiles associated with different internal states can
specifically address the non-stationary stimulus-encoding capability of
neuronal populations. Lastly, integrating state fluctuations as a tem-
poral framework can enhance our understanding of the network
dynamics contributing to neuronal variability.

Several studies have demonstrated that the structural con-
nectivity of neural networks directly influences neural dynamics92.
Theoretical studies on biologically plausible models show that neural
computations are guided by the interplay between recurrence and
changes in dimensionality, enabling flexible computations across dif-
ferent tasks93,94. This flexibility in local circuits has been shown to be
closely linked to the emergence of metastable states, where neural
activity remains in quasi-stable patterns before abruptly transitioning
to new states95. These metastable states have provided a valuable fra-
mework for studying how structural connectivity relates to variability
and noise correlations, which in turn influences the state-dependent
processing of sensory information96–100. While these studies have
suggested important neural mechanisms, they are yet to be tested in
the scenario of state-dependent changes in local circuit dynamics,
which could represent a more global mechanism underlying the
dynamic variability observed across various brain areas. To address
this gap, our future work will investigate the state-specific functional
organization of the cortical circuits and how they adapt to different
internal and external stimuli, with a particular focus on the mechan-
isms that drive state transitions and their impact on sensory
processing.

In this study, wemake use of the controlled yet dynamic structure
of the passive viewing design to trace neuronal variability across dis-
crete oscillation states in awake mice. While our discrete character-
ization of brain states provides a straightforward interpretation of
neural activity, recognizing the possibility of continuous state changes
(such as a continuum of pupil size or network activity changes) is vital
for exploring the full spectrum of neural responses in awake, behaving
animals. Additionally, to fully characterize neuronal variability and its
influence on information processing in the cortex, investigating neural
activity during active tasks is essential. Recent studies have shown that
a subject’s engagement during an active task varies drastically from
trial to trial, playing out throughmultiple interleaved strategies62,101,102,
where other work has shown that changes in these strategies can be
predicted by the animal’s arousal levels, suggesting a direct link
between brain states and task performance11,103. While the tools in this
study can help identify variables that promote task engagement, they
do not elucidate the underlying mechanisms causing state transitions.
Understanding these dynamics entails a thorough investigation of unit
activity in the subcortical regions of the brain.

Our observations, combined with existing studies on spiking
variability, suggest that cortical state acts as a key determinant of the
variability seen in the cortex. By offering a comprehensive view of this
variability, we have been able to directly study both the sensory and
non-sensory aspects of neuronal responses in the visual cortex. It is
evident that spiking variability in the cortex transcends mere ‘neural
noise’, and explaining neuronal variability by partitioning it into dif-
ferent origins can help us understand its influence on information
representation and propagation in the brain, and ultimately resolve its
computational contribution to behavior.

Methods
Data collection
The data analyzed and discussed in this paper are part of the publicly
released Allen Institute Brain Observatory Neuropixels dataset (n = 25
mice)22. Neural recordings used Neuropixels probes104 comprising 960
recording sites, of which either 374 for “Neuropixels 3a” or 383 for
“Neuropixels 1.0” were configured for recording. The electrode sites
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closest to the tip formed a checkerboard pattern on a 70 μm wide
x 10mm long shank. Six Neuropixels probes were inserted at the
shallowest 2mm and at the deepest 3.5mm into the brain for each
recording. These requirements ensured adequate recordings of the
cortex while preventing any brain damage. To ensure that the probes
were recording from functionally related cells in each visual area,
retinotopic centers were determined and targeted accordingly. Tar-
geting the cortical visual areas, AM, PM, V1, LM, AL, and RL, was guided
by the angle of approach of the probe, as well as the depth of func-
tionality of the imaging boundaries. All procedures were performed
according to protocols approved by the Allen Institute Institutional
Animal Care and Use Committee under an assurance with the NIH
Office of Laboratory Animal Welfare.

The Open Ephys GUI was used to collect all electrophysiological
data. Signals from each recording site were split into a spike band
(30 kHz sampling rate, 500Hzhighpassfilter) and anLFPband (2.5 kHz
sampling rate, 1000Hz lowpass filter). Spike sorting followed the
methods outlined in Siegle, Jia, et al.22. Briefly, the spike-band data was
subject to DC offset removal, median subtraction, filtering, and
whitening before applying the Kilosort2 MATLAB package (https://
github.com/MouseLand/Kilosort) for spike time identification andunit
assignment18. Detailed information about the complete experimental
design can be found in Durand et al.105.

Statistics and data analyses
For all analyses, Python was used as the primary programming lan-
guage. Essential analytical tools utilized include Scipy106 and Scikit-
learn107. Error bars, unless otherwise specified, were determined as the
standard error of the mean. For comparisons across units (n = 7609
units after QC filtering, and n = 3923 units post-RF filtering), mice
(n = 25), or states (n = 3), we used a one-way ANOVA for Gaussian-
distributedmetrics and the rank sum test for non-Gaussian distributed
metrics. In cases of high subject-to-subject variability, we used a paired
T-test. Bonferroni correction was applied for multi-group compar-
isons. To evaluate the similarity to the previously established anato-
mical visual hierarchy inmice25, we computed the correlation between
our measured variable and the anatomical hierarchy score (V1: −0.50,
RL: −0.14, LM: −0.13, AL: 0.00, PM: 0.12, AM: 0.29), and Pearson’s
correlation was applied to estimate the significance of correlation.

Visual stimulus
Custom scripts based on PsychoPy (Peirce, 2007) were used to create
visual stimuli, which were then presented on an ASUS PA248Q LCD
monitor. The monitor had a resolution of 1920 x 1200 pixels and a
refresh rate of 60Hz, measuring 21.93 inches wide. The stimuli were
shownmonocularly, with the monitor positioned 15 cm from the right
eye of the mouse. The visual space covered by the stimuli was
120° × 95° before any distortion occurred. Each monitor used in the
experiment was gamma corrected and maintained a mean luminance
of 50 cd/m2. To accommodate the mouse’s close viewing angle,
spherical warping was applied to all stimuli to ensure consistent
apparent size, speed, and spatial frequency across the monitor from
the mouse’s perspective.

Receptive field mapping. The receptive field locations were mapped
with small Gabor patches randomly flashed at one of 81 locations
across the screen. Every degree of drifting grating (3 directions: 0°,
45°, 90°) was characterized by a 2Hz, 0.04 cycles with a 20° circular
mask. The receptive field map (RF) for an individual unit is defined as
the average 2D histogram of spike counts at each of the 81 locations,
where each pixel corresponds to a 10° × 10° square.

Stimuli for passive viewing. The mice were exposed to various types
of stimuli during the experiment, including drifting gratings, natural
movies, and a flashes stimulus. The gratings stimulus included 4

directional gratings thatwere repeated 75 times at a frequency of 2Hz.
As for the natural movies, they were divided into 30 s clips, and each
clip was repeated 30 times as a block. To introduce variability, there
were an additional 20 repeats with temporal shuffling. Lastly, the fla-
shes stimulus included a series of dark or light full field image with
luminance = 100 cd/m2.

Quality control metrics
All single-neuron analyses (Figs. 4, 5) were performed on neurons that
successfully met three essential quality control thresholds: presence
ratio (>0.9), inter-spike interval violations (< 0.5) and amplitude cut-
off (<0.1). Specific details of these metrics can be found in Siegle,
Jia, et al.22. Thesemetricswere implemented toprevent the inclusion of
neurons with noisy data in the reported analyses, considering both the
physical characteristics of the units’ waveforms and potential spike
sorting challenges. For single-neurons analyzed in Fig. 5, a tighter
threshold on presence ratio (>0.95) was incorporated to avoid inflated
values of prediction accuracy. Additionally, analyses in Figs. 4F and 5
were filtered for neurons with receptive fields positioned at least 20
degrees away fromthemonitor’s edge. This criterionwas incorporated
to facilitate a meaningful comparison of the relative contributions
from different sources of variability.

Local field potentials and time-frequency analysis
Prior to constructing the hidden Markov model (HMM), we identified
appropriate frequency ranges in the LFPs. To evaluate their power
spectra, we applied short time-Fourier transform (STFT) on single
channels using a Hann window of size ~800ms such that consecutive
windows overlapped over ~400ms. Z-scoring the power spectrum at
each frequency revealed LFP modulations in distinct frequency bands
(Fig. 2B). Further informed by the literature on LFPs in the mouse
cortex33,34,108–110, the following frequency rangeswere selected from the
LFP spectrum: 3–8Hz (theta), 10–30Hz (beta), 30–50Hz (lowgamma),
and 50–80Hz (high gamma). To filter the LFPs,we constructed four IIR
Butterworth filters of order 11, each corresponding to the above fre-
quency ranges. Finally, envelopes of the filtered LFP signals, obtained
via the Hilbert transform, were supplied as observations to the HMM.

As part of these observations provided to the HMM model, we
included LFPs recorded across different cortical depths. To determine
the corresponding layer of each LFP channel, we first estimated the
depth of the middle layer of the cortical column. Similar to methods
summarized previously24,111, we applied current source density (CSD)
on the LFPswithin the 250ms interval post-presentationof theflashing
stimulus. To evaluate the CSD, we calculated each recording site’s
average evoked (stimulus-locked) LFP response (s) and duplicated the
uppermost and lowermost LFP traces. Next, we smoothed the signals
across sites as shown in equation (1), where r is the coordinate per-
pendicular to the layers, and h is the spatial sampling distance along
the electrode. Finally, the CSD mapping was obtained as the second
spatial derivative of the LFP response (equation (2), Supplementary
Fig. S1D, right). TheCSDmap can approximately dissociate the current
sinks from current sources, respectively indicated as downward and
upward deflections in the density map.

sðrÞ= 1
4
ðsðr +hÞ+ 2sðrÞ+ sðr � hÞÞ ð1Þ

D=
1

h2 ðsðr +hÞ � 2sðrÞ+ sðr � hÞÞ: ð2Þ

To facilitate visualization, we used 2D Gaussian kernels
(σx = 1, σy = 2) to smooth the CSD maps. We identified the location of
the input layer based on the first appearance of a sink within 100ms of
the stimulus onset. We then designated the center channel of the
middle layer (L4) as the input layer and marked eight channels above
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and below it as L4. All channels above the middle layer were classified
as superficial layers (L2/3), while all channels below the middle layer
but above the white matter were categorized as deep layers (L5/6).
Lastly, for eachmouse, we validated the layer classification against the
spectral decomposition of the LFPs across depth (Supplementary
Fig. S1D).

Identification of internal oscillation states—hidden
Markov model
We used a hidden Markov model (HMM) to detect latent states or
patterns from envelopes of band-passed LFP signals. According to the
model, network activity along the visual hierarchy is inoneofMhidden
“states” at each given time. Each state is a vector, S(a, d), constituting a
unique LFP power distribution over all depths (d = [L2/3, L4, L5/6])
across six visual areas (a = [V1 − AM]) in the cortex (emission matrix,
Supplementary Fig. S3A). In an HMM-based system, stochastic transi-
tions between states are assumed to behave as a Markov process such
that the transition to a subsequent state solely depends on the current
state. These transitions are governed by a “transition” probability
matrix, Tm,n, whose elements represent the probability of transitioning
fromstatem to staten at eachgiven time (SupplementaryFig. S3B).We
assumed the emission distribution to be Gaussian over the power
signals to train a single HMM for each mouse, yielding the emission
and transition probabilities between states. Tomatch the frame rate of
the natural movie, we averaged the power signals within non-
overlapping windows of 30 ms. Each HMM was optimized using the
Baum-Welch algorithm with a fixed number of hidden states, M.

In an HMM, the number of states, M, is a hyperparameter. To find
the optimum number of states (M*), we used a majority rule across all
mice. For each mouse, we optimized the 3-fold cross-validated log-
likelihood (LL) estimate of the HMM fit, penalizing the metric if the
inferred latent states were similar. The correction for similarity was
imperative to determining distinct states with unique definitions.
‘Similarity’ between the states was quantified as the top eigenvalue of
the state definition matrix evaluated as the mean power across the
identified frequency ranges (number of states × number of frequency
bands, Fig. 2C, right). The top eigenvalue represents the maximum
variance in the matrix. In such a case, smaller values indicate lower
variance in the definition matrix and, therefore, highly collinear state
definitions. To apply this correction, we divided the log-likelihood
estimate with the top eigenvalue where bothmetrics were individually
normalized between -1 and 1 over a range of M ∈ [2, 6]. Normalization
was performed to allow equal weighting of the two metrics. The
optimal number of states for each mouse was then identified as the
number of states at which the ratio between the two metrics was
maximized (Fig. 2C). In 24out of 25mice, the ratio consistently pointed
to M* = 3 optimal states (Fig. 2C) and was accordingly chosen as the
optimal number of states for all HMMs fitted to the LFPs of each
individual mouse. We performed several control analysis to confirm
the optimal number of states.

• First, we validated ourmethodology (Supplementary Fig. S2B–D).
For this, we applied ourmodel selection criteria to data generated
from an HMM with three states. We simulated a 10-dimensional
time series with a duration of ~35min, sampled at 30 Hz
(N = 60,000 samples), assuming diagonal Gaussian observations
(Supplementary Fig. S2B). The simulation was repeated 30 times,
with randomization of the emission covariance matrix for each
run. In all simulations, our model selection criteria successfully
identified the optimal number of states, where the ratio between
the cross-validated log-likelihood (5 - fold) and the top eigenvalue
peaked at M* = 3 states (Supplementary Fig. S2C, D).

• Second, for each mouse, we considered the trend of cross-
validated LL over a range of states (Supplementary Fig. S2E, F). As
expected, the cross-validated LL increased (negative LL
decreased) with the number of states until it reached a plateau

(Supplementary Fig. S2E). We selected the optimal number of
states (M*) at the point where the incremental increase in the
cross-validated LL had the largest drop (i.e., the point of greatest
curvature, Elbow method112) before the plateau. In majority of
mice, we found that three states were optimal, although in some
cases, the Elbow method selected over-fitted models (Supple-
mentary Fig. S2F).

• Next, we used K-means clustering to cluster all the input LFP
variables between K = 2 and K = 6 clusters (Supplementary
Fig. S2G). To determine the number of clusters (states), we
applied the Elbow method to the percentage of variance
explained by each clustering model. The percentage of explained
variance is the ratio of the variance of the between-cluster sum of
squares to the variance in the total sum of squares. Applying the
Elbowmethod to eachmouse, we selected the number of clusters,
K*. In most mice, the LFPs optimally clustered into three or four
separate groups, displaying a remarkably similar power distribu-
tion obtained via the HMM.

• Lastly, we applied dimensionality reduction to the input LFP
variables using UMAP (Uniform Manifold Approximation and
Projection113) and evaluated the silhouette scores on the reduced
input matrix based on three HMM states (Supplementary
Fig. S2H). The distribution of the silhouette scores across all mice
further confirmed our model selection.

The LFP variables supplied to the HMMmodel include LFPs from
one randomly selected channel from each layer of the cortical column:
L2/3, L4, and L5/6, across all six visual area. This approach aims to
achieve smoother states by reducing the number of observation vari-
ables provided to the HMM model while ensuring representation
across the cortex. We validated this selection using two controls. First,
we tested if latent states varied across visual areas. For this, we esti-
mated HMM states using LFPs from each individual area (Supple-
mentary Fig. S1B). Second,we conducted a randomized control test for
each session, running 20 independent HMM fits with randomly selec-
ted LFP channels from each layer (Supplementary Fig. S1E). The initial
guesses for emissions and transition probabilities were kept constant
across different runs. Subsequently, for each test, we evaluated the
pairwise correlations between state predictions for each pair of the
HMM models. The correlation coefficients averaged around
0.54± 0.04 (mean ± sem, n = 25 mice, Supplementary Fig. S1C) for the
area-wise control and around 0.75 ± 0.04 (mean± sem, n = 25 mice,
Supplementary Fig. S1F) for the layer-wise control, indicating the
robustness of the determined states against area and channel
selection.

Behavioral features
Two synchronized cameras were used to record themice: one focused
on the body at a 30Hz sampling rate, and the other an infrared camera
focused on the pupil at a 60Hz sampling rate. Running wheels were
equippedwith encoders tomeasuredistance and speed of themouses’
running during the data acquisition session. Behavioral variables used
in regression analyses were quantified using universal mouse models
constructed using DeepLabCut8,22 for pupil size changes and using
SLEAP7 for limb-to-tail movements. SLEAP, a modular UNet-based
machine learning system, was trained to recognize up to 7 tracking
points on the mouse’s body, including the body center, forelimbs,
hindlimbs, and the proximal and distal ends of the tail (Fig. 2C).
However, the right forelimb was frequently occluded from view and
subsequently dropped from analyses. We trained the model on a
combined 1311 labeled frames from across all mice, with annotations
ranging from 10–300 frames per mouse. Utilizing SLEAP’s human-in-
the-loop workflow, we alternated between labeling and training the
model to achieve incremental improvements in prediction. In frames
with resolutions of 478 × 638 pixels, the final model reported an
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average pixel error of 7.15 ± 4.1 (mean± std, n = 1311 frames) pixels
across all body parts. Input features for the regression models were
generated as smoothed Euclidean distances between coordinates of
each body part in consecutive frames. Additionally, facial movements
were quantified using face motion energy from cropped behavior
videos18. At each time point, this energy was determined as the sum of
the absolute differences between consecutive frames. Lastly, the full
set of methodological details for pupil tracking can be found in Siegle,
Jia, et al.22.

Lastly, to identify the behavioral features that could generate
states most aligned with the internal brain states, we applied Hidden
Markov Models (HMMs) to separately infer behavioral states from the
mouse’s running speed, pupil size, and face motion. Each HMM was
modeled with the same number of states as the internal brain states
(M* = 3), ensuring consistency in state comparison. For each feature, we
constructed behavioral state sequences by fitting an HMM using
Gaussian emissions to model the continuous data. The transition
probabilities were learned from the data, using the Expectation-
Maximization (EM) algorithm for maximum likelihood estimation.
After deriving the behavioral state sequences for each feature, we
evaluated the Pearson correlation coefficient between each behavioral
state sequence and the internal state sequence derived from cortical
LFPs (Supplementary Fig. S5B).

Variability metrics
Shared variance. To investigate the co-variation of diverse neurons
within a population, we employed linear dimensionality reduction
techniques, as summarized in Williamson et al.55. Specifically, we uti-
lized factor analyses (FA) to quantify the percentage of variance shared
across neural populations in the visual cortex. FA explicitly divides
the spike count covariance into two components: a shared component
and an independent component. The shared component captures
the variability that is common across neurons within the recorded
population, while the independent component quantifies the Poisson-
like variability specific to each individual neuron. The FA analysis
is performed on a matrix, x 2 Rn×T , comprising spike counts from
n simultaneously recorded neurons, along with a corresponding
mean spike count vector, μ 2 Rn× 1. As illustrated in Fig. 4D, FA
effectively separates the spike count covariance into the shared com-
ponent represented by LLT and the independent component repre-
sented by Ψ.

x � N ðμ, LLT +ΨkkÞ ð3Þ

Here, L 2 Rn×m is the loading matrix that relates the ‘m’ latent
variables to the neural activity, and Ψ is a diagonal matrix comprising
independent variances of each neuron. We calculated the percent
shared variance for eachneuronbyutilizing themodel estimates of the
loading matrix, L, and the diagonal matrix, Ψ. This enabled us to
quantify the degree to which the variability of each neuron was shared
with at least one other neuron within the recorded population. For the
kth neuron, the percent shared variance was evaluated as follows:

% shared variance = 100×
LkL

T
k

LkL
T
k +Ψ

ð4Þ

For our analyses, the FA model parameters, μ, L, and Ψ, were
estimated using singular-value decomposition (sklearn.decomposi-
tion.FactorAnalysis). The number of latent variables, m, was deter-
mined by applying FA to the spike counts and selecting the value form
that maximized a three-fold cross-validated data likelihood (m = 24 ± 3
factors, mean± std). Spike counts were evaluated in 30ms bins and
values of shared variances averaged over all neurons in the given
analyses (Fig. 4D, Supplementary Fig. S11G).

In Fig. 4D, state-specific shared variance for each neuron was
evaluated on spike count matrices, x 2 Rn ×Ts , comprised of con-
catenated epochs from each state. This allowed us to assess howmuch
variability each neuron shared with others during specific oscillation
states. Given the sensitivity of factor analysis to sample size differences
and the varied occupancy of internal states, it was essential to account
for these differences114. To address this, we evaluated shared variance
of single units while matching sample sizes across states for each
subject. Specifically, we matched sample sizes across states by iden-
tifying the state with the lowest occupancy for each subject and using
bootstrapping (n = 20 repeats) on the other two states to equalize their
sample sizes. In each bootstrapped iteration, we determined the
optimal number of components for factor analysis using three-fold
cross-validation of the log-likelihood estimate. The shared variance
values reported in Fig. 4D represent averages across all neurons, with
each neuron’s shared variance calculated as the average over all
bootstrapped repeats.

Coefficient of variation. In our study, we investigate the spike timing
variability of single neurons by analyzing the distributions of their
inter-spike-intervals (ISIs). To achieve this, we constructed histograms
of the ISIs and quantified their characteristics using the coefficient of
variation (CV). The CV is a dimensionless metric that represents the
relative width of the ISI histogram. It is calculated as the ratio between
the standard deviation of the ISIs (σΔt) and their mean (Δt). The CV
values reported in Fig. 4E, Supplementary Fig. S11G represent the
average across all single units.

CV =
σΔt

Δt
ð5Þ

To evaluate the coefficient of variation (CV) of individual neurons
across different states (Fig. 4E), we created histograms of their inter-
spike-intervals (ISIs) based on the spike times observed within each
state. Since large differences in dwell times across states could bias the
ISI ranges and, consequently, the state-specific CVs, we fixed the range
of the ISI histograms. We selected an interval of t = 2.5 s, the point
where the CV showed the largest incremental increase before pla-
teauing (Supplementary Fig. S6B). In addition, we accounted for dif-
ferences infiring rates across states by equalizing thefiring rate of each
unit to match its lowest rate observed across states. For each unit, the
CVwas then evaluated as an average over 20 repeats and the CV values
reported in Fig. 4E represent the average across all single units.

Fano factor. We evaluated the trial-to-trial variability of neuronal
activity in the visual cortex using Fano factor (FF), calculated as the
ratio of variance to the mean spike count across trials, respectively.
Similar to previous studies in the visual cortex57,61, we computed the FF
of each neuron within non-overlapping windows of 150ms and aver-
aged it across time. FF values reported in Fig. 4F, Supplementary
Figs. S6C, D, G, S11G present the average FF across units. For all ana-
lyses, FF was evaluated only on units whose receptive fields were at
least 20 degrees away from the monitor’s edge.

Quantifying trial-wise variability in a state-specific manner posed
unique challenges (Fig. 4F). Partitioning each session into states over
time disrupted the trial structure, necessitating an additional con-
straint over the number of trials in each window. A time-window was
considered for FF evaluation if the mouse remained in the same state
across atleast 10 trials for the complete duration of the time-window
(150ms). To account for variations in firing rate and sample size across
states,we usedbootstrapping (n = 20 iterations) to equalize bothfiring
rates and sample sizes. In each bootstrapping iteration, we first mat-
ched the sample sizes across states and then dropped spikes to
equalize firing rates across states. The FF values reported in Fig. 4F are
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averaged across all units, with each unit’s FF calculated as an average
over the bootstrapped repeats.

A classical metric for assessing variability, the Fano factor (FF), is
traditionally evaluated under controlled experimental conditions to
manage fluctuations in the subject’s gaze61,70,87. Additionally, as
receptive field size increases along the visual hierarchy, eye move-
ments can significantly influence FF trends. To address these effects
(Supplementary Fig. S6E), we evaluated FF by clustering the mouse’s
gaze into small, consistent bouts of fixed gaze and calculating the
metric across trials within each cluster. For each mouse, we applied
hierarchical clustering to the gaze data, dividing it into five clusters to
identify bouts of stable gaze (Supplementary Fig. S6F). Given that
mice lack a fovea and the standard receptive field size in their primary
visual areas is ~20°, this clustering approach ensured that the center
of the mouse’s eye position remained within these constraints
(~23.5 ± 1. 5°, mean ± SEM). We then partitioned each session by state
and computed the Fano factor for each neuron, averaging it across
time. This method of constraining the mouse’s gaze eliminated area-
wise differences in the Fano factor across all states (Supplementary
Fig. S6G).

Mutual information
Mutual information (MI) measures the reduction in uncertainty about
one random variable when the value of another variable is known115.
For two variables, X and Y, it is calculated as the difference between the
total entropy of X, denoted as H(X), and the entropy that remains in X
after learning the value of Y, referred to as the conditional entropy
H(X∣Y).

MIðX ;Y Þ=HðX Þ � HðX jY Þ ð6Þ

=HðX Þ+HðY Þ � HðX ,Y Þ ð7Þ

Similar to correlation, MI is symmetric in X and Y, meaning that
MI(X; Y) =MI(Y; X). This is evident when MI is re-written in terms of
joint entropy between the variables (equation (7)). However, MI
surpasses correlation in its capacity to capture non-linear connec-
tions between variables. Given that responses of visual neurons canbe
highly non-linear functions of the visual input, we favored MI as our
primary metric to quantify the amount of pixel-level information
embedded in the neuronal activity of the visual cortex. Yet,
calculating entropy requires knowledge of the joint probability
distribution function (pdf) of the random variables, which is often
unavailable. Many studies resort to ‘plug-in’ estimators that involve
intricate evaluations of individual pdfs, a particularly onerous task for
sizable datasets like ours. To sidestep the need for pdf estimation, we
employed a matrix-based entropy estimator whose properties have
been shown to align with the axiomatic properties of Renyi’s α-order
entropy (α > 0)47.

Here, we provide a brief description of the process of entropy
evaluation using the estimator, for specific details see Giraldo et al.47.

First, the sample variable, X = ½x1, x2, :::, xN � 2 RN ×M , is projected into a
reproducing kernel Hilbert space (RKHS) through a positive definite
kernel, κ : X ×X 7!R. Next, a corresponding normalized Grammatrix,
denoted as A, is generated from the pairwise evaluations of the kernel,

κ. In this matrix, each entry Ai,j is calculated as 1
T

Kijffiffiffiffiffiffiffiffiffi
KiiKjj

p , where Ki,

j = κ(xi, xj) and K 2 RN ×N . The entropy estimator then defines entropy
using the eigenspectrum of the normalized Gram matrix A, following
the equation (8), where λj(A) represents the jth eigenvalue of matrix A.
Finally, the joint entropy,H(X, Y) or Sα(A, B), is evaluated as the entropy
of the Hadamard product, A∘B (equation (9)), where B is the normal-
ized Gram matrix associated with Y. The Hadamard product is

interpreted as computing a product kernel, κ((xi, yi), (xj, yj)).

SαðAÞ=
1

1� α
log2

XN

j = 1

λjðAÞα
" #

, ð8Þ

SαðA,BÞ= Sα
A � B

traceðA � BÞ

� �
ð9Þ

In our analyses, we consider X = ½x1, x2, :::, xN � 2 RN ×M to repre-
sent the spike count matrix for all neurons in the population, where
each xi 2 RM is a vector containing spike counts from M neurons at
time i. Similarly, Y = ½y1, y2, :::, yN � 2 RN × P is a matrix containing image
pixels, with each yi representing a flattened vector of all pixels in the
stimulus image at time i. For state-wise analyses of MI (Fig. 4G), we
exclusively considered times corresponding to the specific state under
examination.MIwas computed per trial, but onlywhen the subject had
spent at least 3 s in the particular state during the trial, i.e., i ∈ [3, 30]
seconds. Each frame was downsampled by a factor of 5, and spike
counts were evaluated in 30ms bins to match the stimulus frame rate.
To constrain the metric between [0, 1], all MI measures were normal-
ized by the geometric mean of the individual entropy of the two
variables, Sα(A) and Sα(B)116. The values presented in the paper are
averages taken across all subjects (Figs. 3F, 4G).

Entropy estimation is dependent on two hyperparameters: the
order, α, and the kernel, κ. Given the sparsity of neural activity data, we
chose the order, α, to be 1.01. Next, κ is a positive definite kernel that
determines the RKHS and thus dictates themapping of the probability
density functions (pdfs) of the input variables to the RKHS. For our
analyses,we employed a non-linear Schoenberg kernel (equation (10)).
These positive definite kernels are universal, in that, they have been
proven to approximate arbitrary functions on spike trains117. The win-
dow to evaluate spike counts was set to 30ms tomatch the frame rate
of the visual stimulus, and the kernel width, σk, was determined using
Scott’s rule118.

κðxi, xjÞ= exp
XM

m= 1

� 1
σκ

ðxi,m � xj,mÞ2
( )

ð10Þ

Stimulus features
Capitalizing on the ethological significance of a naturalistic stimuli119–121

and to mitigate sudden changes in neural activity due to abrupt
changes in visual stimulus, our analysis centered on neural data
obtained from repeated viewings of a 30 s natural movie clip. We
anticipated that the statistical properties of the clipwould significantly
contribute to explaining neuronal variability. In order to reveal any
statistical preferences of neurons across the cortical hierarchy, we
constructed stimulus features from both low- and high-order (>sec-
ond-order moments) properties of the pixel distribution. The low-
order features included image intensity and contrast, whereas, the
high-order features included kurtosis, entropy, energy, and edges.

Intensity and contrast:Thesemetrics captured thefirst and second
order statistics of the image, and they were evaluated as themean (μm)
and standard deviation (σm) of all the pixel values in each image frame,
I, respectively.

Kurtosis: A higher-order statistic of the pixel distribution, Kurtosis
measures the extent to which pixel values tend to cluster in the tails or
peaks of the distribution. This metric was computed on the distribu-
tion of pixels within each image frame by determining the ratio
between the fourth central moment and the square of the variance.

Kurt½I�=
E ðI � μmÞ4
h i

σ4
m

ð11Þ
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Entropy: To assess the average information content within each
image frame, entropywas calculated basedon the sample probabilities
(pi) of pixel values spanning the range of 0–255.

H½I�= �
Xnpixels

i = 1

pilog2ðpiÞ ð12Þ

Energy: Similar to the quantification of face motion energy18, we
evaluated image energy as the absolute sum of the differences
between the pixel values of consecutive frames.

E½I�=
Xnpixels

i= 1

It � It�1

�� �� ð13Þ

Edges: Given the observed line and edge selectivity of visual cor-
tical neurons122, we devised thismetric to quantify the fraction of pixels
that contribute to edges within a given image frame. For the identifi-
cation of edges in each frame, we employed Canny edge detection
(cv.Canny). This technique involves several sequential steps. First, a 2D
Gaussian filter with dimensions of 5 × 5 pixels was applied to the image
to reduce noise. Subsequently, the smoothed image underwent con-
volution with Sobel kernels in both horizontal and vertical directions,
producing first derivatives along the respective axes, as described in
equations ((14)–(15)). The resulting edge directions (Θ) were approxi-
mated to one of four angles: [0°, 45°, 90°, 135°]. To refine the edges, a
process called edge thinning was used. During this step, the entire
image was scanned to locate pixels that stood as local maxima within
their gradient-oriented vicinity. These selected pixels moved on to the
subsequent phase, while the restwere set to zero. Lastly, two threshold
values were introduced for edge identification. Edges with intensity
gradients below the lower threshold were disregarded, whereas those
with gradients above the higher threshold were retained as ‘sure
edges’. Pixels with gradient intensities falling between these two
thresholds were analyzed based on their connection to a ‘sure’ edge.
Ultimately, the output of the Canny edge detector was a binary image
outlining the edge-associated pixels. Themetric ‘edges’was computed
as the mean value of this binary image.

gradient =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x +G

2
y

q
ð14Þ

Θ= tan�1 Gy

Gx
ð15Þ

Input data for the neural encoding model
Identical set of features were employed to predict both averaged
neuronal population activity and single neuron responses. These fea-
tures were grouped into three distinct categories to evaluate the
respective contributions of each set of variables. The categorization of
features is as follows: 1. stimulus features, 2. behavioral features, and 3.
features encompassing internal brain dynamics, which included raw
LFPs from the same cortical area, as well as averaged neuronal popu-
lation activity from visual areas other than the target area. For raw
LFPs, representative channels were once again selected across the
cortical depth, ensuring the inclusion of one channel from each layer.
Stimulus and behavioral features were sampled at a frequency of
30Hz. However, to align with this temporal resolution, both LFPs and
averaged population activity were binned into 30ms bins, where each
bin represented an average signal value within the respective time
window.

The broad range of input features exhibited pronounced inter-
correlations, and constructing an encoding model using a design

matrix containing linearly dependent columns inherently jeopardizes
model reliability. To avoid this multicollinearity in the design matrix,
we systematically orthogonalized the input features using QR
decomposition63. QR decomposition of a matrix, denoted asM∈ Rm×n,
yields M =QR, where Q∈Rm×n denotes an orthonormal matrix and
R∈Rn×n represents anupper triangularmatrix. Consequently,matrixQ
spans the same space as the columns ofM, ensuring that the columns
of Q maintain mutual orthogonality. As QR decomposition system-
atically decorrelates each column from all preceding ones, the
arrangement of columns within the matrix becomes pivotal.

Prior to constructing the time-shifted design matrix, we first
orthogonalized internal brain activity relative to all other input fea-
tures, positioning these columns towards the latter part of the matrix,
M. This step was aimed at reducing the potential influence of stimulus
and behavior features on brain activity17. We retained the original
definitions of stimulus features due to their limited correlations within
and across groups (rwithin = 0.3 ± 0.1, racross =0.06 ±0.1, mean± std
Fig. 5A, panel 2). Given the strong correlations between behavioral
features (rwithin =0.4 ± 0.2, racross =0.07 ±0.07, mean± std), we
applied QR decomposition to decorrelate all behavioral variables
among themselves. The final collection of input features for the
full model comprised behavioral features that had undergone ortho-
gonalization among themselves, stimulus features in their original
form, and internal brain activity features that were orthogonal
both within and across the categories of features. Next, each input
signal of length τ was organized such that each row consisted of
variables shifted in time by one frame (30 Hz) relative to the original,
also known as a Toeplitz matrix. Lastly, to structure the design matrix,
the various input signals were time-aligned and concatenated.
Including a time-shifted design matrix enabled us to account for the
temporal dependency between various sources and neural activity. To
determine the appropriate time dependency for each type of neural
data (averaged neuronal population and single neuron activity), we
tested a range of values (population model: [0.2–6]s, single-neuron
model: [0.2–2]s) and chose the dependency that maximized the
model’s cross-validated explained variation, cvR2 (Supplementary
Fig. S7E–H).

Lastly, when quantifying group-specific contributions using
unique models, the features of internal brain activity were orthogo-
nalized only within the group. This approach was taken to prevent
partial decorrelation across groups, as the designed stimulus features
and behavioral features might not encompass the entire array of fea-
tures encoded in neural activity. Such partial decorrelation could
potentially obscure the interpretability of the contributions from each
category of input features to spiking variability.

Internal state conditioned neural encoding model
Theencodingmodelwas constructed topredict the averagedneuronal
population activity and single-neuron spike rates. Unlike classical lin-
ear prediction models that assume constant relative contributions of
various sources to spiking variability, our encoding framework devi-
ates from this assumption by accounting for variations in contribu-
tions resulting from internal state fluctuations. To achieve this, each
predictor model learns regressors only from signals associated with a
state. This approach enables state-specific investigations of the relative
contributions across the three distinct sources of variability outlined
earlier. Each predictor model is tailored specifically to the neural
activity in each state. Importantly, it should be highlighted that the
HMM states are held constant. In other words, the HMMmodel is not
optimized to improve predictions but maintains its established defi-
nitions based on LFPs. To quantify the contributions of the variability
sources to the averaged population activity, we used ridge regression,
whereas spiking activity was modeled using a generalized linear
model (GLM).
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Population model. To mitigate overfitting, the population model was
trained with ridge regression. Ridge regression extends the cost
function of ordinary least squares by introducing an additional l2
penalty, (λ), on the regression coefficients (β). This penalty effectively
shrinks the coefficients of input variables that contribute less to the
prediction, promoting smoother and more generalizable regression
coefficients (equation (16)). In our HMM based regression model, the
design matrix Xs and the regressand, ys, are informed by the HMM,
comprising signals corresponding to one of three identified states
(s = [SH, SI, SL]). The magnitude of the regularization penalty, λs, for
weights in each state were individually determined through three-fold
cross-validation of R2 on a randomly selected 30% subset of the data-
set.

min
βs

ðys � XsβsÞT ðys � XsβsÞ+ λsβs
Tβs ð16Þ

Single neuron model. A regularized Poisson GLM was used to model
the firing rate of each neuron while taking into account variances
associated with internal state fluctuations (s = [SH, SI, SL]). The encod-
ing model describes spike counts of single neurons as a Poisson dis-
tribution whose expected value can be modeled as the exponential of
the linear combination of input features, i.e, EðysjXsÞ= eθs

T Xs . The
coefficients of the regression model, θs, are then estimated by pena-
lized maximum likelihood with an l2 penalty on the coefficients
(equation (17))123. To avoid overfitting, the magnitude of the regular-
ization penalty, λs, for weights for each neuron in each state were
individually determined using nested-five-fold cross-validation of R2

during training124.

max
θs

LðθsjXs, ysÞ= log p ys; e
θs

T Xs

� �� �
� λsθs

Tθs ð17Þ

The final evaluation of the reported scores (Figs. 5, 6) includes a
five-fold cross-validation of explained variance (cvR2, equation (18)),
where ŷ is the predicted spike rate and y is the mean of the true spike
rate. The cvR2 values in Fig. 5 were computed on spike counts of single
neurons smoothed with a 50ms Gaussian for each trial.

R2 = 1�
P

i ðyi � ŷiÞ2P
i ðyi � yiÞ2

ð18Þ

To quantify the state-wise contributions of the input features, we
partition the dataset into training and testing sets such that each fold
contains an equitable representation of signals from every state. This
step was crucial to prevent any potential biases in estimating con-
tributions due to an imbalance in the number of data points in each
state. State-specific contributions were evaluated on the respective
performance of the state-wise regressors, while overall performance
was evaluated by concatenating the predictions across the three state
models in each fold.

Clustering of neuronal encoding patterns
To identify neuronal clusters with similar source contributions, we
performed clustering on their encoding patterns. The feature coding
for each neuron was represented by a five-element vector, which
comprised the cross-validated explained variance from each source
category: stimulus, behavior, local field potentials (LFPs) from the
target area, averaged population activity from other visual areas, and
the number of source categories with more than 10% explanatory
power. All single units that passed the selection criteria for inclusion in
the single-neuron model were included in this clustering analysis.

We implemented a clustering workflow that used mean-shift
clustering in conjunction with a consensus clustering method125 to
reduce sensitivity to random initial conditions and hyperparameter
selection (Supplementary Fig. S9A, left). Tominimize noise, we applied

UMAP (Uniform Manifold Approximation and Projection)113, a
manifold-based dimensionality reduction technique, to project the
feature matrix into a lower-dimensional space.

To achieve stable co-clustering results, we first built a co-
clustering association matrix by performing 200 repeats of mean-
shift clustering on the UMAP projections. Each entry in the co-
clustering association matrix represents the probability of two units
belonging to the same cluster (Supplementary Fig. S9A, top-right).
Since UMAP projections are highly sensitive to hyperparameter
selection, we randomized these hyperparameters in each iteration
(min dist 2 ½0:02, 0:5�, n_neighbors ∈ [5, 10], n_components ∈ [2, 5]).
Overall, each iteration included a random initialization of the mean-
shift clustering model as well as a random dimensionality reduction.

Next, we clustered the association matrix with hierarchical clus-
tering to determine the cluster labels (Supplementary Fig. S9A, center-
right). The optimal number of clusters was determined by evaluating
the silhouette scores on a range of clusters obtained via hierarchical
clustering (Supplementary Fig. S9A, bottom-right), and selecting the
point of maximum curvature as the optimal number of clusters112.
Clustering based on the final explained variance of each unit resulted
in 8 clusters (Supplementary Fig. S9B). We then manually combined
clusters with dominant explained variances in the same source cate-
gories. Finally, using the same clustering workflow, we also clustered
the units based on their state-specific explained variance values
(Supplementary Fig. S9J, K).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data is freely accessible via theAllen SDK22 (Details at https://portal.brain-
map.org/circuits-behavior/visual-coding-neuropixels). Source data for all
figures are provided with this paper. Source data are provided with
this paper.

Code availability
The complete code for reproducing all figures is available on the
author’s GitHub repository126: https://github.com/shailajaAkella/
Deciphering-neuronal-variability.
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